#!/usr/bin/env python3 """ Matplotlib based photo ranking system using the Elo rating system. Reference: http://en.wikipedia.org/wiki/Elo_rating_system by Nick Hilton This file is in the public domain. """ # Python import argparse import glob import json import os import sys # 3rd party import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import exifread class Photo: LEFT = 0 RIGHT = 1 def __init__(self, filename, score = 1400.0, wins = 0, matches = 0): if not os.path.isfile(filename): raise ValueError("Could not find the file: %s" % filename) self._filename = filename self._score = score self._wins = wins self._matches = matches self._read_and_downsample() def data(self): return self._data def filename(self): return self._filename def matches(self): return self._matches def score(self, s = None, is_winner = None): if s is None: return self._score assert is_winner is not None self._score = s self._matches += 1 if is_winner: self._wins += 1 def win_percentage(self): return 100.0 * float(self._wins) / float(self._matches) def __eq__(self, rhs): return self._filename == rhs._filename def to_dict(self): return { 'filename' : self._filename, 'score' : self._score, 'matches' : self._matches, 'wins' : self._wins, } def _read_and_downsample(self): """ Reads the image, performs rotation, and downsamples. """ print(self._filename) #---------------------------------------------------------------------- # read image f = self._filename data = mpimg.imread(f) #---------------------------------------------------------------------- # downsample # the point of downsampling is so the images can be redrawn by the # display as fast as possible, this is so one can iterate though the # image set as quickly as possible. No one want's to wait around for # the fat images to be loaded over and over. # dump downsample, just discard columns-n-rows M, N = data.shape[0:2] print(M) print(N) MN = max([M,N]) print(MN) step = int(MN / 800) if step == 0: step = 1 #data = data[ 0:M:step, 0:N:step, :] #---------------------------------------------------------------------- # rotate # read orientation with exifread with open(f, 'rb') as fd: tags = exifread.process_file(fd) r = 'Horizontal (normal)' try: r = str(tags['Image Orientation']) except: pass # rotate as necessary if r == 'Horizontal (normal)': pass elif r == 'Rotated 90 CW': data = np.rot90(data, 3) elif r == 'Rotated 90 CCW': data = np.rot90(data, 1) elif r == 'Rotated 180': data = np.rot90(data, 2) else: raise RuntimeError('Unhandled rotation "%s"' % r) self._data = data class Display(object): """ Given two photos, displays them with Matplotlib and provides a graphical means of choosing the better photo. Click on the select button to pick the better photo. ~OR~ Press the left or right arrow key to pick the better photo. """ def __init__(self, f1, f2, title = None, figsize = None): self._choice = None assert isinstance(f1, Photo) assert isinstance(f2, Photo) if figsize is None: figsize = [20,12] fig = plt.figure(figsize=figsize) h = 10 ax11 = plt.subplot2grid((h,2), (0,0), rowspan = h - 1) ax12 = plt.subplot2grid((h,2), (0,1), rowspan = h - 1) ax21 = plt.subplot2grid((h,6), (h - 1, 1)) ax22 = plt.subplot2grid((h,6), (h - 1, 4)) kwargs = dict(s = 'Select', ha = 'center', va = 'center', fontsize=20) ax21.text(0.5, 0.5, **kwargs) ax22.text(0.5, 0.5, **kwargs) self._fig = fig self._ax_select_left = ax21 self._ax_select_right = ax22 fig.subplots_adjust( left = 0.02, bottom = 0.02, right = 0.98, top = 0.98, wspace = 0.05, hspace = 0, ) ax11.imshow(f1.data()) ax12.imshow(f2.data()) for ax in [ax11, ax12, ax21, ax22]: ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_xticks([]) ax.set_yticks([]) self._attach_callbacks() if title: fig.suptitle(title, fontsize=20) plt.show() def _on_click(self, event): if event.inaxes == self._ax_select_left: self._choice = Photo.LEFT plt.close(self._fig) elif event.inaxes == self._ax_select_right: self._choice = Photo.RIGHT plt.close(self._fig) def _on_key_press(self, event): if event.key == 'left': self._choice = Photo.LEFT plt.close(self._fig) elif event.key == 'right': self._choice = Photo.RIGHT plt.close(self._fig) def _attach_callbacks(self): self._fig.canvas.mpl_connect('button_press_event', self._on_click) self._fig.canvas.mpl_connect('key_press_event', self._on_key_press) class EloTable: def __init__(self, max_increase = 32.0): self._K = max_increase self._photos = {} self._shuffled_keys = [] def add_photo(self, filename_or_photo): if isinstance(filename_or_photo, str): filename = filename_or_photo if filename not in self._photos: self._photos[filename] = Photo(filename) elif isinstance(filename_or_photo, Photo): photo = filename_or_photo if photo.filename() not in self._photos: self._photos[photo.filename()] = photo def get_ranked_list(self): # Convert the dictionary into a list and then sort by score. ranked_list = self._photos.values() ranked_list = sorted( ranked_list, key = lambda record : record.score(), reverse = True) return ranked_list def rank_photos(self, n_iterations, figsize): """ Displays two photos using the command "gnome-open". Then asks which photo is better. """ n_photos = len(self._photos) keys = list(self._photos.keys()) for i in range(n_iterations): np.random.shuffle(keys) n_matchups = n_photos / 2 for j in range(0, n_photos - 1, 2): match_up = j / 2 title = 'Round %d / %d, Match Up %d / %d' % ( i + 1, n_iterations, match_up + 1, n_matchups) photo_a = self._photos[keys[j]] photo_b = self._photos[keys[j+1]] d = Display(photo_a, photo_b, title, figsize) if d._choice == Photo.LEFT: self.__score_result(photo_a, photo_b) elif d._choice == Photo.RIGHT: self.__score_result(photo_b, photo_a) else: raise RuntimeError("oops, found a bug!") def __score_result(self, winning_photo, loosing_photo): # Current ratings R_a = winning_photo.score() R_b = loosing_photo.score() # Expectation E_a = 1.0 / (1.0 + 10.0 ** ((R_a - R_b) / 400.0)) E_b = 1.0 / (1.0 + 10.0 ** ((R_b - R_a) / 400.0)) # New ratings R_a = R_a + self._K * (1.0 - E_a) R_b = R_b + self._K * (0.0 - E_b) winning_photo.score(R_a, True) loosing_photo.score(R_b, False) def to_dict(self): rl = self.get_ranked_list() rl = [x.to_dict() for x in rl] return {'photos' : rl} def main(): description = """\ Uses the Elo ranking algorithm to sort your images by rank. The program globs for .jpg images to present to you in random order, then you select the better photo. After n-rounds, the results are reported. Click on the "Select" button or press the LEFT or RIGHT arrow to pick the better photo. """ parser = argparse.ArgumentParser(description = description) parser.add_argument( "-r", "--n-rounds", type = int, default = 3, help = "Specifies the number of rounds to pass through the photo set (3)" ) parser.add_argument( "-f", "--figsize", nargs = 2, type = int, default = [20, 12], help = "Specifies width and height of the Matplotlib figsize (20, 12)" ) parser.add_argument( "photo_dir", help = "The photo directory to scan for .jpg images" ) args = parser.parse_args() assert os.path.isdir(args.photo_dir) os.chdir(args.photo_dir) ranking_table_json = 'ranking_table.json' ranked_txt = 'ranked.txt' # Create the ranking table and add photos to it. table = EloTable() #-------------------------------------------------------------------------- # Read in table .json if present sys.stdout.write("Reading in photos and downsampling ...") sys.stdout.flush() if os.path.isfile(ranking_table_json): with open(ranking_table_json, 'r') as fd: d = json.load(fd) # read photos and add to table for p in d['photos']: photo = Photo(**p) table.add_photo(photo) #-------------------------------------------------------------------------- # glob for files, to include newly added files filelist = glob.glob('*.jpg') for f in filelist: table.add_photo(f) print(" done!") #-------------------------------------------------------------------------- # Rank the photos! table.rank_photos(args.n_rounds, args.figsize) #-------------------------------------------------------------------------- # save the table with open(ranking_table_json, 'w') as fd: d = table.to_dict() jstr = json.dumps(d, indent = 4, separators=(',', ' : ')) fd.write(jstr) #-------------------------------------------------------------------------- # dump ranked list to disk with open(ranked_txt, 'w') as fd: ranked_list = table.get_ranked_list() heading_fmt = "%4d %4.0f %7d %7.2f %s\n" heading = "Rank Score Matches Win % Filename\n" fd.write(heading) for i, photo in enumerate(ranked_list): line = heading_fmt %( i + 1, photo.score(), photo.matches(), photo.win_percentage(), photo.filename()) fd.write(line) #-------------------------------------------------------------------------- # dump ranked list to screen print("Final Ranking:") with open(ranked_txt, 'r') as fd: text = fd.read() print(text) if __name__ == "__main__": main()